请我喝杯咖啡☕
*我的帖子解释了 fashion-mnist。
fashionmnist() 可以使用 fashion-mnist 数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
- 第二个参数是 train(optional-default:true-type:bool)。 *如果为 true,则使用训练数据(60,000 张图像),如果为 false,则使用测试数据(10,000 张图像)。
- 第三个参数是transform(optional-default:none-type:callable)。
- 第四个参数是 target_transform(optional-default:none-type:callable)。
- 第五个参数是 download(optional-default:false-type:bool):
*备注:
- 如果为 true,则从互联网下载数据集并解压(解压)到根目录。
- 如果为 true 并且数据集已下载,则将其提取。
- 如果为 true 并且数据集已下载并提取,则不会发生任何事情。
- 如果数据集已经下载并提取,则应该为 false,因为它速度更快。
- 您可以手动下载并提取数据集(t10k-images-idx3-ubyte.gz、t10k-labels-idx1-ubyte.gz、train-images-idx3-ubyte.gz 和 train-labels-idx1-ubyte.gz)。 gz) 从这里到 data/fashionmnist/raw/。
from torchvision.datasets import FashionMNIST train_data = FashionMNIST( root="data" ) train_data = FashionMNIST( root="data", train=True, transform=None, target_transform=None, download=False ) test_data = FashionMNIST( root="data", train=False ) len(train_data), len(test_data) # (60000, 10000) train_data # Dataset FashionMNIST # Number of datapoints: 60000 # Root location: data # Split: Train train_data.root # 'data' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method MNIST.download of Dataset FashionMNIST # Number of datapoints: 60000 # Root location: data # Split: Train> len(train_data.classes) # 10 train_data.classes # ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', # 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] train_data[0] # (<PIL.Image.Image image mode=L size=28x28>, 9) train_data[1] # (<PIL.Image.Image image mode=L size=28x28>, 0) train_data[2] # (<PIL.Image.Image image mode=L size=28x28>, 0) train_data[3] # (<PIL.Image.Image image mode=L size=28x28>, 3) train_data[4] # (<PIL.Image.Image image mode=L size=28x28>, 0) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(8, 4)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (image, label) in enumerate(data, 1): plt.subplot(2, 5, i) plt.tight_layout() plt.title(label) plt.imshow(image) if i == 10: break plt.show() show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data")
以上就是PyTorch 中的 FashionMNIST的详细内容,更多请关注php中文网其它相关文章!
版权声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系 yyfuon@163.com