使用 python(和 gensim)实现 word2vec
注意:此代码是用 python 3.6.1 (+gensim 2.3.0) 编写的
word2vec与gensim的python实现及应用
import re import numpy as np from gensim.models import word2vec from nltk.corpus import gutenberg from multiprocessing import pool from scipy import spatial
- 导入训练数据集
- 从nltk库导入莎士比亚的哈姆雷特语料库
sentences = list(gutenberg.sents('shakespeare-hamlet.txt')) # import the corpus and convert into a list print('type of corpus: ', type(sentences)) print('length of corpus: ', len(sentences))
语料库类型:类“list”
语料库长度:3106
print(sentences[0]) # title, author, and year print(sentences[1]) print(sentences[10])
['[', 'the', '悲剧', 'of', '哈姆雷特', 'by', '威廉', '莎士比亚', '1599', ']']
['actus', 'primus', '.']
['弗兰', '.']
预处理数据
- 使用re模块预处理数据
- 将所有字母转换为小写
- 删除标点符号、数字等。
for i in range(len(sentences)): sentences[i] = [word.lower() for word in sentences[i] if re.match('^[a-za-z]+', word)] print(sentences[0]) # title, author, and year print(sentences[1]) print(sentences[10])
['the'、'悲剧'、'of'、'哈姆雷特'、'by'、'威廉'、'莎士比亚']
['actus', 'primus']
['弗兰']
创建和训练模型
- 创建 word2vec 模型并使用 hamlet 语料库对其进行训练
- 关键参数说明(https://radimrehurek.com/gensim/models/word2vec.html)
- 句子:训练数据(必须是带有标记化句子的列表)
- size:嵌入空间的尺寸
- sg: cbow 如果为 0,skip-gram 如果为 1
- 窗口:每个上下文所占的单词数(如果窗口
- 大小为3,考虑左邻域中的3个单词和右邻域中的3个单词)
- min_count:词汇表中包含的最小单词数
- iter:训练迭代次数
- workers:要训练的工作线程数量
model = word2vec(sentences = sentences, size = 100, sg = 1, window = 3, min_count = 1, iter = 10, workers = pool()._processes) model.init_sims(replace = true)
保存和加载模型
- word2vec模型可以本地保存和加载
- 这样做可以减少再次训练模型的时间
model.save('word2vec_model') model = word2vec.load('word2vec_model')
相似度计算
- 嵌入单词(即向量)之间的相似度可以使用余弦相似度等指标来计算
model.most_similar('hamlet')
[('horatio', 0.9978846311569214),
('女王', 0.9971947073936462),
('莱尔特斯', 0.9971820116043091),
('国王', 0.9968599081039429),
('妈妈', 0.9966716170310974),
('哪里', 0.9966292381286621),
('迪尔', 0.9965540170669556),
('奥菲莉亚', 0.9964221715927124),
('非常', 0.9963752627372742),
('哦', 0.9963476657867432)]
v1 = model['king'] v2 = model['queen'] # define a function that computes cosine similarity between two words def cosine_similarity(v1, v2): return 1 - spatial.distance.cosine(v1, v2) cosine_similarity(v1, v2)
0.99437165260314941
参考文献:
立即学习“Python免费学习笔记(深入)”;
- 原始论文:mikolov, t.、chen, k.、corrado, g. 和 dean, j. (2013)。向量空间中单词表示的有效估计。 arxiv 预印本 arxiv:1301.3781.
以上就是使用 Python 进行词嵌入:Wordc的详细内容,更多请关注php中文网其它相关文章!