嗨,
我想测试一个小型的llm程序,我决定用tensorflow来做。
我的源代码可以在 https://github.com/victordalet/first_llm
一、要求
您需要安装tensorflow和numpy
立即学习“Python免费学习笔记(深入)”;
pip install 'numpy <hr><h2> ii - 创建数据集 </h2> <p>您需要创建一个数据<a style="color:#f60; text-decoration:underline;" href="https://www.php.cn/zt/52359.html" target="_blank">字符串数组</a>来计算一个小数据集,例如我创建:</p> <pre class="brush:php;toolbar:false"> data = [ "salut comment ca va", "je suis en train de coder", "le machine learning est une branche de l'intelligence artificielle", "le deep learning est une branche du machine learning", ]
如果你没有灵感,可以在kaggle上找到一个数据集。
iii - 构建模型并训练它
为此,我使用各种方法创建了一个小型 llm 类。
class llm: def __init__(self): self.model = none self.max_sequence_length = none self.input_sequences = none self.total_words = none self.tokenizer = none self.tokenize() self.create_input_sequences() self.create_model() self.train() test_sentence = "pour moi le machine learning est" print(self.test(test_sentence, 10)) def tokenize(self): self.tokenizer = tokenizer() self.tokenizer.fit_on_texts(data) self.total_words = len(self.tokenizer.word_index) + 1 def create_input_sequences(self): self.input_sequences = [] for line in data: token_list = self.tokenizer.texts_to_sequences([line])[0] for i in range(1, len(token_list)): n_gram_sequence = token_list[:i + 1] self.input_sequences.append(n_gram_sequence) self.max_sequence_length = max([len(x) for x in self.input_sequences]) self.input_sequences = pad_sequences(self.input_sequences, maxlen=self.max_sequence_length, padding='pre') def create_model(self): self.model = sequential() self.model.add(embedding(self.total_words, 100, input_length=self.max_sequence_length - 1)) self.model.add(lstm(150, return_sequences=true)) self.model.add(dropout(0.2)) self.model.add(lstm(100)) self.model.add(dense(self.total_words, activation='softmax')) def train(self): self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) x, y = self.input_sequences[:, :-1], self.input_sequences[:, -1] y = tf.keras.utils.to_categorical(y, num_classes=self.total_words) self.model.fit(x, y, epochs=200, verbose=1)
iv - 测试
最后,我使用类的构造函数中调用的测试方法来测试模型。
警告:如果生成的单词与前一个单词相同,我会在此测试函数中阻止生成。
def test(self, sentence: str, nb_word_to_generate: int): last_word = "" for _ in range(nb_word_to_generate): token_list = self.tokenizer.texts_to_sequences([sentence])[0] token_list = pad_sequences([token_list], maxlen=self.max_sequence_length - 1, padding='pre') predicted = np.argmax(self.model.predict(token_list), axis=-1) output_word = "" for word, index in self.tokenizer.word_index.items(): if index == predicted: output_word = word break if last_word == output_word: return sentence sentence += " " + output_word last_word = output_word return sentence
以上就是创建 LLM 以在 Python 中使用张量流进行测试的详细内容,更多请关注php中文网其它相关文章!
版权声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系 yyfuon@163.com